# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

### THIRD SEMESTER - NOVEMBER 2007

## **CH 3809 - COORDINATION CHEMISTRY**

**AD 19** 

Date: 26/10/2007 Dept. No. Max.: 100 Marks
Time: 9:00 - 12:00

PART - A

Answer all the questions

 $(10 \times 2 = 20)$ 

- 1. What is S<sub>N</sub>CB mechanism in the hydrolysis reaction of octahedral complexes
- 2. Explain Why the magnetic moment of  $\mu_{obs}$  of  $[FeF_6]^{3-}$  is not equal to the magnetic moment value of  $\mu_{cal}$  (spin only value), whereas in  $[Fe(CN)_6]^{3-}$ ,  $\mu_{obs}$  is equal to  $\mu_{cal}$ .
- 3. Define CFSE. Calculate CFSE for d<sup>6</sup> low and high spin octahedral system.
- 4. What is Nephelauxetic effect.?
- 5. Explain why large numbers of sharp bands of low intensity are observed for d<sup>5</sup> configuration?
- 6. Derive the ground term configuration of d<sup>7</sup>?
- 7. Find the values of x assuming the validity of the 18 electron rule for  $[Co_2(CO)_x(C_2H_2)]$ .
- 8. Why is the rate of electron transfer reaction slow in the system  $[Co(NH_3)_6]^{2+/3+}$  compared to  $[Fe(CN)_6]^{3-/4-}$  system?
- 9. What is Ziegler Natta catalyst? What type of chemical reaction can be effected by using this catalyst?
- 10. Mention two biologically important coordination compounds and their applications.

PART – B

Answer any **EIGHT** questions

 $(8 \times 5 = 40)$ 

- 11. Calculate OSSE and state whether the following oxides are spinel or inverse spinel : Mn<sub>3</sub>O<sub>4</sub>, CuFe<sub>2</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub>.
- 12. Differentiate labile and inert complexes using crystal field theory.
- 13. Discuss any two evidences of crystal field theory'
- 14. How are terminal and bridging carbonyl group differentiated by IR spectral analysis?
- 15. Write short notes on spectrochemical series. How molecular orbital theory is used to explain OH is a weak field ligand than H<sub>2</sub>O.
- 16. Explain static and dynamic Jahn-Teller effect. Why do electronic spectra of [V(H<sub>2</sub>O)<sub>6</sub>]3<sup>+</sup> show only two absorption bands against three predicted for the system?
- 17. Explain the 'synergic' effect of bonding of carbonyl ligands with the metals.
- 18. What is trans effect? Explain the theories of trans effect in explaining the mechanism of substitution reaction of square planar complexes.
- 19. Write notes on i) the Wackers process ii) hydroformylation reaction iii) metathesis reaction.
- 20. What are supramolecules? Explain the nature and types of interactions of supramolecule.
- 21. Discuss the structure and functions of the enzyme, carboxypeptidases.
- 22. Write notes on photosubstitution and photoisomerisation reactions with examples.

### PART C

# Answer any FOUR questions

 $(4 \times 10 = 40)$ 

- 23. How do the d-orbitals split in octahedral and tetrahedral crystal field of ligands? Discuss any two evidences of crystal field theory.
- 24. Explain with the help of MO theory why Cl<sup>-</sup> acts as a weak ligand where as CN<sup>-</sup> acts as a strong ligand in octahedral transition metal complexes.
- 25. Draw and explain the Tanabe Sugano diagram for d<sup>2</sup>, octahedral confiquration of metal ion and explain the possible electronic transitions for weak and strong field ligands..
- 26. Give an account of the tunneling and bridging mechanisms of electron transfer reaction of metal complexes.
- 27. Explain the bonding present in ferrocene using MO theory.
- 28. Explain the functions and structural aspects of superoxide dismutase and carboxy peptidases.

\*\*\*\*\*\*